Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

PE

Partition entropy


Description

Produces the partition entropy index. The optimal number of clusters k is is such that the index takes the minimum value.

Usage

PE (U, b)

Arguments

U

Membership degree matrix

b

Logarithmic base (default: exp(1))

Value

pe

Value of the partition entropy index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

Bezdek J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

See Also

Examples

## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## partition entropy index
pe=PE(clust$U)

fclust

Fuzzy Clustering

v2.1.1
GPL (>= 2)
Authors
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Initial release
2019-09-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.