The generalized correlated cross-validation (GCCV) score
Compute the generalized correlated cross-validation (GCV) score.
GCV.S( y, S, criteria = "GCV", W = NULL, trim = 0, draw = FALSE, metric = metric.lp, ... )
y | 
 Matrix of set cases with dimension (  | 
S | 
|
criteria | 
 The penalizing function. By default "Rice" criteria. Possible values are "GCCV1", "GCCV2", "GCCV3", "GCV".  | 
W | 
 Matrix of weights.  | 
trim | 
 The alpha of the trimming.  | 
draw | 
 =TRUE, draw the curves, the sample median and trimmed mean.  | 
metric | 
 Metric function, by default   | 
... | 
 Further arguments passed to or from other methods.  | 
A.-If trim=0:
∑(y-y.fit)^2 / (1-tr(C)/n)^2
where S is the smoothing matrix S and:
A.-If C=2SΣ - SΣ S 
B.-If  C=SΣ 
C.-If  C=SΣ S' 
with Σ is the n x n covariance matrix with
cor(ε_i,ε_j ) =σ
Note: Provided that C = I and the smoother matrix S is symmetric and idempotent, as is the case for many linear fitting techniques, the trace term reduces to  n - tr[S], which is proportional to the familiar denominator in GCV.
Returns GCV score calculated for input parameters.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006. Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994. Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
## Not run: data(phoneme) mlearn<-phoneme$learn tt<-1:ncol(mlearn) S1 <- S.NW(tt,2.5) S2 <- S.LLR(tt,2.5) gcv1 <- GCV.S(mlearn, S1) gcv2 <- GCV.S(mlearn, S2) gcv3 <- GCV.S(mlearn, S1,criteria="AIC") gcv4 <- GCV.S(mlearn, S2,criteria="AIC") gcv1; gcv2; gcv3; gcv4 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.