Proximities between functional data
Approximates semi-metric distances for functional data of class fdata
or fd.
semimetric.basis( fdata1, fdata2 = fdata1, nderiv = 0, type.basis1 = NULL, nbasis1 = NULL, type.basis2 = type.basis1, nbasis2 = NULL, ... )
fdata1 | 
 Functional data 1 or curve 1.  | 
fdata2 | 
 Functional data 2 or curve 2.  | 
nderiv | 
 Order of derivation, used in   | 
type.basis1 | 
 Type of Basis for   | 
nbasis1 | 
 Number of Basis for   | 
type.basis2 | 
 Type of Basis for   | 
nbasis2 | 
 Number of Basis for   | 
... | 
 Further arguments passed to or from other methods.  | 
Approximates semi-metric distances for functional data of two fd
class objects.  If functional data are not functional fd class, the
semimetric.basis function creates a basis to represent the functional
data, by default is used create.bspline.basis and the
fdata class object is converted to fd class using the
Data2fd.
 The function calculates distances between the
derivative of order nderiv of curves using deriv.fd
function.
Returns a proximities matrix between functional data.
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See also metric.lp, semimetric.NPFDA
and deriv.fd
## Not run: data(phoneme) DATA1<-phoneme$learn[c(30:50,210:230)] DATA2<-phoneme$test[231:250] a1=semimetric.basis(DATA1,DATA2) a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier", nbasis1=11, type.basis2="fourier",nbasis2=11) fd1 <- fdata2fd(DATA1) fd2 <- fdata2fd(DATA2) a3=semimetric.basis(fd1,fd2) a4=semimetric.basis(fd1,fd2,nderiv=1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.