Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

CreateBWPlot

Functional Principal Component Analysis Bandwidth Diagnostics plot


Description

This function by default creates the mean and first principal modes of variation plots for 50 If provided with a derivative options object (?FPCAder) it will return the differentiated mean and first two principal modes of variation for 50

Usage

CreateBWPlot(fpcaObj, derOptns = NULL, bwMultipliers = NULL)

Arguments

fpcaObj

An FPCA class object returned by FPCA().

derOptns

A list of options to control the derivation parameters; see ?FPCAder. If NULL standard diagnostics are returned

bwMultipliers

A vector of multipliers that the original 'bwMu' and 'bwCov' will be multiplied by. (default: c(0.50, 0.75, 1.00, 1.25, 1.50)) - default: NULL

Examples

set.seed(1)
n <- 40
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res1 <- FPCA(sampWiener$Ly, sampWiener$Lt, 
            list(dataType='Sparse', error=FALSE, kernel='epan', verbose=FALSE))
CreateBWPlot(res1)

fdapace

Functional Data Analysis and Empirical Dynamics

v0.5.6
BSD_3_clause + file LICENSE
Authors
Cody Carroll [aut, cre] (<https://orcid.org/0000-0003-3525-8653>), Alvaro Gajardo [aut], Yaqing Chen [aut], Xiongtao Dai [aut], Jianing Fan [aut], Pantelis Z. Hadjipantelis [aut], Kyunghee Han [aut], Hao Ji [aut], Shu-Chin Lin [ctb], Paromita Dubey [ctb], Hans-Georg Mueller [cph, ths, aut], Jane-Ling Wang [cph, ths, aut]
Initial release
2021-01-10,

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.