Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

FVPA

Functional Variance Process Analysis for dense functional data


Description

Functional Variance Process Analysis for dense functional data

Usage

FVPA(y, t, q = 0.1, optns = list(error = TRUE, FVEthreshold = 0.9))

Arguments

y

A list of n vectors containing the observed values for each individual. Missing values specified by NAs are supported for dense case (dataType='dense').

t

A list of n vectors containing the observation time points for each individual corresponding to y.

q

A scalar defining the percentile of the pooled sample residual sample used for adjustment before taking log (default: 0.1).

optns

A list of options control parameters specified by list(name=value); by default: 'error' has to be TRUE, 'FVEthreshold' is set to 0.90. See ‘Details in ?FPCA’.

Value

A list containing the following fields:

sigma2

Variance estimator of the functional variance process.

fpcaObjY

FPCA object for the original data.

fpcaObjR

FPCA object for the functional variance process associated with the original data.

References

Hans-Georg Müller, Ulrich Stadtmüller and Fang Yao, "Functional variance processes." Journal of the American Statistical Association 101 (2006): 1007-1018

Examples

set.seed(1)
n <- 25
pts <- seq(0, 1, by=0.01)
sampWiener <- Wiener(n, pts)
# Data have to dense for FVPA to be relevant!
sampWiener <- Sparsify(sampWiener, pts, 101) 
fvpaObj <- FVPA(sampWiener$Ly, sampWiener$Lt)

fdapace

Functional Data Analysis and Empirical Dynamics

v0.5.6
BSD_3_clause + file LICENSE
Authors
Cody Carroll [aut, cre] (<https://orcid.org/0000-0003-3525-8653>), Alvaro Gajardo [aut], Yaqing Chen [aut], Xiongtao Dai [aut], Jianing Fan [aut], Pantelis Z. Hadjipantelis [aut], Kyunghee Han [aut], Hao Ji [aut], Shu-Chin Lin [ctb], Paromita Dubey [ctb], Hans-Georg Mueller [cph, ths, aut], Jane-Ling Wang [cph, ths, aut]
Initial release
2021-01-10,

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.