Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

MakeGPFunctionalData

Create a Dense Functional Data sample for a Gaussian process


Description

For a Gaussian process, create a dense functional data sample of size n over a [0,1] support.

Usage

MakeGPFunctionalData(
  n,
  M = 100,
  mu = rep(0, M),
  K = 2,
  lambda = rep(1, K),
  sigma = 0,
  basisType = "cos"
)

Arguments

n

number of samples to generate

M

number of equidistant readings per sample (default: 100)

mu

vector of size M specifying the mean (default: rep(0,M))

K

scalar specifying the number of basis to be used (default: 2)

lambda

vector of size K specifying the variance of each components (default: rep(1,K))

sigma

The standard deviation of the Gaussian noise added to each observation points.

basisType

string specifying the basis type used; possible options are: 'sin', 'cos' and 'fourier' (default: 'cos') (See code of 'CreateBasis' for implementation details.)

Value

Y: X(t_j), Yn: noisy observations


fdapace

Functional Data Analysis and Empirical Dynamics

v0.5.6
BSD_3_clause + file LICENSE
Authors
Cody Carroll [aut, cre] (<https://orcid.org/0000-0003-3525-8653>), Alvaro Gajardo [aut], Yaqing Chen [aut], Xiongtao Dai [aut], Jianing Fan [aut], Pantelis Z. Hadjipantelis [aut], Kyunghee Han [aut], Hao Ji [aut], Shu-Chin Lin [ctb], Paromita Dubey [ctb], Hans-Georg Mueller [cph, ths, aut], Jane-Ling Wang [cph, ths, aut]
Initial release
2021-01-10,

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.