Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

plot.FPCA

Functional Principal Component Analysis Diagnostics plot


Description

Deprecated. Use plot.FPCA instead.

Plotting the results of an FPCA, including printing the design plot, mean function, scree-plot and the first three eigenfunctions for a functional sample. If provided with a derivative options object (?FPCAder), it will return the differentiated mean function and first two principal modes of variation for 50%, 75%, 100%, 125% and 150% of the defined bandwidth choice.

Usage

CreateDiagnosticsPlot(...)

## S3 method for class 'FPCA'
plot(x, openNewDev = FALSE, addLegend = TRUE, ...)

Arguments

...

passed into plot.FPCA.

x

An FPCA class object returned by FPCA().

openNewDev

A logical specifying if a new device should be opened - default: FALSE

addLegend

A logical specifying whether to add legend.

Details

The black, red, and green curves stand for the first, second, and third eigenfunctions, respectively. plot.FPCA is currently implemented only for the original function, but not a derivative FPCA object.

Examples

set.seed(1)
n <- 20
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 10)
res1 <- FPCA(sampWiener$Ly, sampWiener$Lt, 
            list(dataType='Sparse', error=FALSE, kernel='epan', verbose=FALSE))
plot(res1)

fdapace

Functional Data Analysis and Empirical Dynamics

v0.5.6
BSD_3_clause + file LICENSE
Authors
Cody Carroll [aut, cre] (<https://orcid.org/0000-0003-3525-8653>), Alvaro Gajardo [aut], Yaqing Chen [aut], Xiongtao Dai [aut], Jianing Fan [aut], Pantelis Z. Hadjipantelis [aut], Kyunghee Han [aut], Hao Ji [aut], Shu-Chin Lin [ctb], Paromita Dubey [ctb], Hans-Georg Mueller [cph, ths, aut], Jane-Ling Wang [cph, ths, aut]
Initial release
2021-01-10,

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.