Classification using Random Forest
This function builds a classification model using Random Forest
RANDOMFOREST( train, labels, ntree = 500, nvar = if (!is.null(labels) && !is.factor(labels)) max(floor(ncol(train)/3), 1) else floor(sqrt(ncol(train))), tune = FALSE, ... )
train |
The training set (description), as a |
labels |
Class labels of the training set ( |
ntree |
The number of trees in the forest. |
nvar |
Number of variables randomly sampled as candidates at each split. |
tune |
If true, the function returns paramters instead of a classification model. |
... |
Other parameters. |
The classification model.
## Not run: require (datasets) data (iris) RANDOMFOREST (iris [, -5], iris [, 5]) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.