Regression using Support Vector Machine
This function builds a regression model using Support Vector Machine.
SVR( x, y, gamma = 2^(-3:3), cost = 2^(-3:3), kernel = c("radial", "linear"), epsilon = c(0.1, 0.5, 1), params = NULL, tune = FALSE, ... )
x |
Predictor |
y |
Response |
gamma |
The gamma parameter (if a vector, cross-over validation is used to chose the best size). |
cost |
The cost parameter (if a vector, cross-over validation is used to chose the best size). |
kernel |
The kernel type. |
epsilon |
The epsilon parameter (if a vector, cross-over validation is used to chose the best size). |
params |
Object containing the parameters. If given, it replaces |
tune |
If true, the function returns paramters instead of a classification model. |
... |
Other arguments. |
The classification model.
## Not run: require (datasets) data (trees) SVR (trees [, -3], trees [, 3], kernel = "linear", cost = 1) SVR (trees [, -3], trees [, 3], kernel = "radial", gamma = 1, cost = 1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.