Frequency distribution table for categorical data
A S3 set of methods to easily perform categorical frequency distribution table (fdt_cat) from
vector
, data.frame
and matrix
objects.
## S3 generic fdt_cat(x, ...) ## S3 methods ## Default S3 method: fdt_cat(x, sort=TRUE, decreasing=TRUE, ...) ## S3 method for class 'data.frame' fdt_cat(x, by, sort=TRUE, decreasing=TRUE, ...) ## S3 method for class 'matrix' fdt_cat(x, sort=TRUE, decreasing=TRUE, ...)
x |
A |
by |
Categorical variable used for grouping each categorical response,
useful only on |
sort |
Logical. Should the |
decreasing |
Logical. Should the sort order be increasing or decreasing?
(default = |
... |
Optional further arguments (required by generic). |
The simplest way to run fdt_cat is supplying only the x
object, for example: ct <- fdt_cat(x)
. In this case all necessary
default values (sort = TRUE and decreasing = TRUE) will be used.
These options make the fdt_cat very easy and flexible.
The fdt_cat object stores information to be used by methods summary
,
print
, plot
and mfv
. The result of plot is a bar plot.
The methods summary.fdt_cat
, print.fdt_cat
and plot.fdt_cat
provide a reasonable
set of parameters to format and plot the fdt_cat object in a pretty
(and publishable) way.
For fdt_cat
the method fdt_cat.default
returns a data.frame
storing the fdt.
The methods fdt_cat.data.frame
and fdt_cat.matrix
return a list of class fdt_cat..multiple
.
This list
has one slot for each categorical
variable of the supplied x. Each slot, corresponding to each categorical
variable, stores the same slots of the fdt_cat.default
described above.
José Cláudio Faria
Enio G. Jelihovschi
Ivan B. Allaman
library(fdth) ## Categorical x <- sample(x=letters[1:5], size=5e2, rep=TRUE) (fdt.c <- fdt_cat(x)) (fdt.c <- fdt_cat(x, sort=FALSE)) ##================================================ ## Data.frame: multivariated with two categorical ##================================================ mdf <- data.frame(c1=sample(LETTERS[1:3], 1e2, rep=TRUE), c2=as.factor(sample(1:10, 1e2, rep=TRUE)), n1=c(NA, NA, rnorm(96, 10, 1), NA, NA), n2=rnorm(100, 60, 4), n3=rnorm(100, 50, 4), stringsAsFactors=TRUE) head(mdf) (fdt.c <- fdt_cat(mdf)) (fdt.c <- fdt_cat(mdf, dec=FALSE)) (fdt.c <- fdt_cat(mdf, sort=FALSE)) (fdt.c <- fdt_cat(mdf, by='c1')) ##================================================ ## Matrix: two categorical ##================================================ x <- matrix(sample(x=letters[1:10], size=100, rep=TRUE), nc=2, dimnames=list(NULL, c('c1', 'c2'))) head(x) (fdt.c <- fdt_cat(x))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.