Summary methods for fdt objects
S3 methods to return a data.frame (the frequency
distribution table - fdt) for fdt.default, fdt.multiple,
fdt_cat.default and fdt_cat.multiple objects.
## S3 methods
## S3 method for class 'fdt.default'
summary(object,
columns=1:6,
round=2,
format.classes=FALSE,
pattern="%09.3e",
row.names=FALSE,
right=TRUE, ...)
## S3 method for class 'fdt.multiple'
summary(object,
columns=1:6,
round=2,
format.classes=FALSE,
pattern="%09.3e",
row.names=FALSE,
right=TRUE, ...)
## S3 method for class 'fdt_cat.default'
summary(object,
columns=1:6,
round=2,
row.names=FALSE,
right=TRUE, ...)
## S3 method for class 'fdt_cat.multiple'
summary(object,
columns=1:6,
round=2,
row.names=FALSE,
right=TRUE, ...)object |
A |
columns |
A |
round |
Rounds fdt columns to the specified number of decimal places (default 2). |
format.classes |
Logical, if |
pattern |
Same as |
row.names |
Logical (or character vector), indicating whether (or what)
row names should be printed. The default is |
right |
Logical, indicating whether or not strings should be right-aligned. The default is right-alignment. |
... |
Optional further arguments (require by generic). |
It is possible to select what columns of the table (a data.frame)
will be shown, as well as the pattern of the first column. The columns are:
Class limits
f - Absolute frequency
rf - Relative frequency
rf(%) - Relative frequency, %
cf - Cumulative frequency
cf(%) - Cumulative frequency, %
The available parameters offer an easy and powerful way to format the fdt for publications and other purposes.
A single data.frame for fdt.default or multiple
data.frames for fdt.multiple.
José Cláudio Faria
Enio G. Jelihovschi
Ivan B. Allaman
library (fdth)
#======================
# Vectors: univariated
#======================
set.seed(1)
x <- rnorm(n=1e3,
mean=5,
sd=1)
d <- fdt(x)
str(d)
d
summary(d) # the same
summary(d,
format=TRUE) # It can not be what you want to publications!
summary(d,
format=TRUE,
pattern='%.2f') # Huumm ..., good, but ... Can it be better?
summary(d,
col=c(1:2, 4, 6),
format=TRUE,
pattern='%.2f') # Yes, it can!
range(x) # To know x
summary(fdt(x,
start=1,
end=9,
h=1),
col=c(1:2, 4, 6),
format=TRUE,
pattern='%d') # Is it nice now?
d[['table']] # Stores the feq. dist. table (fdt)
d[['breaks']] # Stores the breaks of fdt
d[['breaks']]['start'] # Stores the left value of the first class
d[['breaks']]['end'] # Stores the right value of the last class
d[['breaks']]['h'] # Stores the class interval
as.logical(d[['breaks']]['right']) # Stores the right option
#=============================================
# Data.frames: multivariated with categorical
#=============================================
mdf <- data.frame(X1=rep(LETTERS[1:4], 25),
X2=as.factor(rep(1:10, 10)),
Y1=c(NA, NA, rnorm(96, 10, 1), NA, NA),
Y2=rnorm(100, 60, 4),
Y3=rnorm(100, 50, 4),
Y4=rnorm(100, 40, 4),
stringsAsFactors=TRUE)
dcat <- fdt_cat(mdf)
summary(dcat)
d <- fdt(mdf)
str(d)
summary(d) # the same
summary(d,
format=TRUE)
summary(d,
format=TRUE,
pattern='%05.2f') # regular expression
summary(d,
col=c(1:2, 4, 6),
format=TRUE,
pattern='%05.2f')
print(d,
col=c(1:2, 4, 6))
print(d,
col=c(1:2, 4, 6),
format=TRUE,
pattern='%05.2f')
levels(mdf$X1)
summary(fdt(mdf,
k=5,
by='X1'))
levels(mdf$X2)
summary(fdt(mdf,
breaks='FD',
by='X2'),
round=3)
summary(fdt(mdf,
k=5,
by='X2'),
format=TRUE,
round=3)
summary(fdt(iris,
k=5),
format=TRUE,
patter='%04.2f')
levels(iris$Species)
summary(fdt(iris,
k=5,
by='Species'),
format=TRUE,
patter='%04.2f')
#=========================
# Matrices: multivariated
#=========================
summary(fdt(state.x77),
col=c(1:2, 4, 6),
format=TRUE)
summary(fdt(volcano,
right=TRUE),
col=c(1:2, 4, 6),
round=3,
format=TRUE,
pattern='%05.1f')Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.