Royston/Parmar spline survival distribution functions
Probability density, distribution, quantile, random generation, hazard,
cumulative hazard, mean and restricted mean functions for the Royston/Parmar
spline model, with one argument per parameter. For the equivalent functions with all parameters collected together in a single argument, see Survspline
.
mean_survspline0( gamma0, gamma1, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline1( gamma0, gamma1, gamma2, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline2( gamma0, gamma1, gamma2, gamma3, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline3( gamma0, gamma1, gamma2, gamma3, gamma4, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline4( gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline5( gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline6( gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots = c(-10, 10), scale = "hazard", timescale = "log" ) mean_survspline7( gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots = c(-10, 10), scale = "hazard", timescale = "log" ) rmst_survspline0( t, gamma0, gamma1, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline1( t, gamma0, gamma1, gamma2, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline2( t, gamma0, gamma1, gamma2, gamma3, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline3( t, gamma0, gamma1, gamma2, gamma3, gamma4, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline4( t, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline5( t, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline6( t, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) rmst_survspline7( t, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots = c(-10, 10), scale = "hazard", timescale = "log", start = 0 ) dsurvspline0( x, gamma0, gamma1, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline1( x, gamma0, gamma1, gamma2, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline2( x, gamma0, gamma1, gamma2, gamma3, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline3( x, gamma0, gamma1, gamma2, gamma3, gamma4, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline4( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline5( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline6( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots, scale = "hazard", timescale = "log", log = FALSE ) dsurvspline7( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots, scale = "hazard", timescale = "log", log = FALSE ) psurvspline0( q, gamma0, gamma1, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline1( q, gamma0, gamma1, gamma2, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline2( q, gamma0, gamma1, gamma2, gamma3, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline3( q, gamma0, gamma1, gamma2, gamma3, gamma4, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline4( q, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline5( q, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline6( q, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) psurvspline7( q, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline0( p, gamma0, gamma1, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline1( p, gamma0, gamma1, gamma2, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline2( p, gamma0, gamma1, gamma2, gamma3, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline3( p, gamma0, gamma1, gamma2, gamma3, gamma4, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline4( p, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline5( p, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline6( p, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) qsurvspline7( p, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots, scale = "hazard", timescale = "log", lower.tail = TRUE, log.p = FALSE ) rsurvspline0(n, gamma0, gamma1, knots, scale = "hazard", timescale = "log") rsurvspline1( n, gamma0, gamma1, gamma2, knots, scale = "hazard", timescale = "log" ) rsurvspline2( n, gamma0, gamma1, gamma2, gamma3, knots, scale = "hazard", timescale = "log" ) rsurvspline3( n, gamma0, gamma1, gamma2, gamma3, gamma4, knots, scale = "hazard", timescale = "log" ) rsurvspline4( n, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots, scale = "hazard", timescale = "log" ) rsurvspline5( n, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots, scale = "hazard", timescale = "log" ) rsurvspline6( n, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots, scale = "hazard", timescale = "log" ) rsurvspline7( n, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots, scale = "hazard", timescale = "log" ) hsurvspline0(x, gamma0, gamma1, knots, scale = "hazard", timescale = "log") hsurvspline1( x, gamma0, gamma1, gamma2, knots, scale = "hazard", timescale = "log" ) hsurvspline2( x, gamma0, gamma1, gamma2, gamma3, knots, scale = "hazard", timescale = "log" ) hsurvspline3( x, gamma0, gamma1, gamma2, gamma3, gamma4, knots, scale = "hazard", timescale = "log" ) hsurvspline4( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots, scale = "hazard", timescale = "log" ) hsurvspline5( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots, scale = "hazard", timescale = "log" ) hsurvspline6( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots, scale = "hazard", timescale = "log" ) hsurvspline7( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots, scale = "hazard", timescale = "log" ) Hsurvspline0(x, gamma0, gamma1, knots, scale = "hazard", timescale = "log") Hsurvspline1( x, gamma0, gamma1, gamma2, knots, scale = "hazard", timescale = "log" ) Hsurvspline2( x, gamma0, gamma1, gamma2, gamma3, knots, scale = "hazard", timescale = "log" ) Hsurvspline3( x, gamma0, gamma1, gamma2, gamma3, gamma4, knots, scale = "hazard", timescale = "log" ) Hsurvspline4( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, knots, scale = "hazard", timescale = "log" ) Hsurvspline5( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, knots, scale = "hazard", timescale = "log" ) Hsurvspline6( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, knots, scale = "hazard", timescale = "log" ) Hsurvspline7( x, gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8, knots, scale = "hazard", timescale = "log" )
gamma0, gamma1, gamma2, gamma3, gamma4, gamma5, gamma6, gamma7, gamma8 |
Parameters describing the baseline spline function, as
described in |
knots |
Locations of knots on the axis of log time, supplied in
increasing order. Unlike in This may in principle be supplied as a matrix, in the same way as for
|
scale |
|
timescale |
|
t |
Vector of times. |
start |
Optional left-truncation time or times. The returned restricted mean survival will be conditioned on survival up to this time. |
x |
Vector of times. |
log |
Return log density or probability. |
q |
Vector of times. |
lower.tail |
logical; if TRUE (default), probabilities are P(X <= x), otherwise, P(X > x). |
log.p |
Return log density or probability. |
p |
Vector of probabilities. |
n |
Number of random numbers to simulate. |
These functions go up to 7 spline knots, or 9 parameters. If you'd like higher-dimension versions, just submit an issue at https://github.com/chjackson/flexsurv-dev/issues.
Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.