Functional Regression Control Chart
It builds a data frame needed to plot the Functional Regression Control Chart introduced in Centofanti et al. (2020), based on a fitted function-on-function linear regression model. The training data have already been used to fit the model. A tuning data set can be provided that is used to estimate the control chart limits. A phase II data set contains the observations to be monitored with the built control charts.
regr_cc_fof( object, mfdobj_y_new, mfdobj_x_new, mfdobj_y_tuning = NULL, mfdobj_x_tuning = NULL, alpha = list(T2 = 0.025, spe = 0.025) )
object |
A list obtained as output from |
mfdobj_y_new |
An object of class |
mfdobj_x_new |
An object of class |
mfdobj_y_tuning |
An object of class |
mfdobj_x_tuning |
An object of class |
alpha |
A named list with two elements,
named |
A data.frame containing the output of the
function control_charts_pca applied to
the prediction errors.
Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Functional Regression Control Chart. Technometrics. <doi:10.1080/00401706.2020.1753581>
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
mfdobj_y <- get_mfd_list(air["NO2"],
n_basis = 15,
lambda = 1e-2)
mfdobj_y1 <- mfdobj_y[1:60]
mfdobj_y_tuning <- mfdobj_y[61:90]
mfdobj_y2 <- mfdobj_y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod_fof <- fof_pc(mfdobj_y1, mfdobj_x1)
cclist <- regr_cc_fof(mod_fof,
mfdobj_y_new = mfdobj_y2,
mfdobj_x_new = mfdobj_x2,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL)
plot_control_charts(cclist)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.