Sample size calculations
Sample size calculations
sampSize(graph, esf, effSize, powerReqFunc, target, corr.sim, alpha, corr.test = NULL, type = c("quasirandom", "pseudorandom"), upscale = FALSE, n.sim = 10000, verbose = FALSE, ...)
graph |
A graph of class |
esf |
... |
effSize |
... |
powerReqFunc |
One power requirement function or a list of these.
If one is interested in the power to reject hypotheses 1 and 3
one could specify: |
target |
Target power that should be at least achieved. Either a numeric scalar between 0 and 1 or if parameter |
corr.sim |
Covariance matrix under the alternative. |
alpha |
... |
corr.test |
Correlation matrix that should be used for the parametric test.
If |
type |
What type of random numbers to use. |
upscale |
Logical. If |
n.sim |
... |
verbose |
Logical, whether verbose output should be printed. |
... |
... |
test |
In the parametric case there is more than one way to handle
subgraphs with less than the full alpha. If the parameter |
...
## Not run: graph <- BonferroniHolm(4) powerReqFunc <- function(x) { (x[1] && x[2]) || x[3] } #TODO Still causing errors / loops. #sampSize(graph, alpha=0.05, powerReqFunc, target=0.8, mean=c(6,4,2) ) #sampSize(graph, alpha=0.05, powerReqFunc, target=0.8, mean=c(-1,-1,-1), nsim=100) sampSize(graph, esf=c(1,1,1,1), effSize=c(1,1,1,1), corr.sim=diag(4), powerReqFunc=powerReqFunc, target=0.8, alpha=0.05) powerReqFunc=list('all(x[c(1,2)])'=function(x) {all(x[c(1,2)])}, 'any(x[c(0,1)])'=function(x) {any(x[c(0,1)])}) sampSize(graph=graph, effSize=list("Scenario 1"=c(2, 0.2, 0.2, 0.2), "Scenario 2"=c(0.2, 4, 0.2, 0.2)), esf=c(0.5, 0.7071067811865476, 0.5, 0.7071067811865476), powerReqFunc=powerReqFunc, corr.sim=diag(4), target=c(0.8, 0.8), alpha=0.025) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.