Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

graph-mcs

Maximum cardinality search on undirected graph.


Description

Returns (if it exists) a perfect ordering of the vertices in an undirected graph.

Usage

mcs(object, root = NULL, index = FALSE)

## Default S3 method:
mcs(object, root = NULL, index = FALSE)

mcsMAT(amat, vn = colnames(amat), root = NULL, index = FALSE)

mcs_marked(object, discrete = NULL, index = FALSE)

## Default S3 method:
mcs_marked(object, discrete = NULL, index = FALSE)

mcs_markedMAT(amat, vn = colnames(amat), discrete = NULL, index = FALSE)

Arguments

object

An undirected graph represented either as a graphNEL object, an igraph, a (dense) matrix, a (sparse) dgCMatrix.

root

A vector of variables. The first variable in the perfect ordering will be the first variable on 'root'. The ordering of the variables given in 'root' will be followed as far as possible.

index

If TRUE, then a permutation is returned

amat

Adjacency matrix

vn

Nodes in the graph given by adjacency matrix

discrete

A vector indicating which of the nodes are discrete. See 'details' for more information.

Details

An undirected graph is decomposable iff there exists a perfect ordering of the vertices. The maximum cardinality search algorithm returns a perfect ordering of the vertices if it exists and hence this algorithm provides a check for decomposability. The mcs() functions finds such an ordering if it exists.

The notion of strong decomposability is used in connection with e.g. mixed interaction models where some vertices represent discrete variables and some represent continuous variables. Such graphs are said to be marked. The mcsmarked() function will return a perfect ordering iff the graph is strongly decomposable. As graphs do not know about whether vertices represent discrete or continuous variables, this information is supplied in the discrete argument.

Value

A vector with a linear ordering (obtained by maximum cardinality search) of the variables or character(0) if such an ordering can not be created.

Note

The workhorse is the mcsMAT function.

Author(s)

Søren Højsgaard, sorenh@math.aau.dk

See Also

Examples

uG <- ug(~ me:ve + me:al + ve:al + al:an + al:st + an:st)
mcs(uG)
mcsMAT(as(uG, "matrix"))
## Same as
uG <- ug(~ me:ve + me:al + ve:al + al:an + al:st + an:st, result="matrix")
mcsMAT(uG)

## Marked graphs
uG1 <- ug(~ a:b + b:c + c:d)
uG2 <- ug(~ a:b + a:d + c:d)
## Not strongly decomposable:
mcs_marked(uG1, discrete=c("a","d"))
## Strongly decomposable:
mcs_marked(uG2, discrete=c("a","d"))

gRbase

A Package for Graphical Modelling in R

v1.8-6.7
GPL (>= 2)
Authors
Søren Højsgaard <sorenh@math.aau.dk>
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.