Support for Functions for smoothers
Those functions are support for the functions pb(), pbo(), ps(), ridge(), ri(), cy(), pvc(), and pbm().
The functions are not intended to be called directly by users.
gamlss.pb(x, y, w, xeval = NULL, ...) gamlss.pbo(x, y, w, xeval = NULL, ...) gamlss.ps(x, y, w, xeval = NULL, ...) gamlss.ri(x, y, w, xeval = NULL, ...) gamlss.cy(x, y, w, xeval = NULL, ...) gamlss.pvc(x, y, w, xeval = NULL, ...) gamlss.pbm(x, y, w, xeval = NULL, ...) gamlss.pbz(x, y, w, xeval = NULL, ...) gamlss.pbc(x, y, w, xeval = NULL, ...) gamlss.pbp(x, y, w, xeval = NULL, ...)
x |
the |
y |
the |
w |
the |
xeval |
used in prediction |
... |
further arguments passed to or from other methods. |
All function return fitted smoothers.
Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Bob Rigby
Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statist. Sci, 11, 89-121.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.