Effect-size plot
The function accepts parameter estimates and their standard errors for a range of models.
ESplot(ESdat,SE=TRUE,logscale=TRUE,alpha=0.05,xlim=c(-2,8),v=1,...)
ESdat |
A data frame consisting of model id, parameter estimates and standard errors or confidence limits |
SE |
If TRUE, the third column of ESdata contains the standard error estimates |
logscale |
If TRUE, indicates log-scale as appropriate for odds ratio |
alpha |
Type-I error rate used to construct 100(1-alpha) confidence interval |
xlim |
Lower and upper limits of the horizontal axis, roughly corresponding to confidence limits |
... |
Other options for |
v |
Location of the vertical line |
Jing Hua Zhao
## Not run: # 7-4-2008 MRC-Epid JHZ options(stringsAsFactors=FALSE) testdata <- data.frame( models=c("Basic model","Adjusted","Moderately adjusted","Heavily adjusted","Other"), logOR=log(c(4.5,3.5,2.5,1.5,1)), SElogOR=c(0.2,0.1,0.2,0.3,0.2) ) ESplot(testdata,v=1) title("A fictitious plot") # Outcomes A2, B2, C2 in three columns # par(mfrow=c(1,3)) # ESplot(snp_effects[c("snpid","A2_b2","A2_se2")], lty=2, xlim=c(0.7,1.4)) # snp_effects["snpid"] <- "" # ESplot(snp_effects[c("snpid","B2_b2","B2_se2")], lty=2, xlim=c(0.7,1.4)) # ESplot(snp_effects[c("snpid","C2_b2","C2_se2")], lty=2, xlim=c(0.7,1.4)) # # Quantitative trait, as appropriate for linear regression # testdata <- data.frame(modelid, beta, se(beta)) # ESplot(testdata, logscale=FALSE) # # Other scenarios # OR with CI # ESplot(testdata,SE=FALSE) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.