Heritability estimation based on genomic relationship matrix using JAGS
Heritability estimation based on genomic relationship matrix using JAGS
h2.jags(y,x,G,eps=0.0001,sigma.p=0,sigma.r=1,parms=c("b","p","r","h2"),...)
y |
outcome vector |
x |
covariate matrix |
G |
genomic relationship matrix |
eps |
a positive diagonal perturbation to G |
sigma.p |
initial parameter values |
sigma.r |
initial parameter values |
parms |
monitored parmeters |
... |
parameters passed to jags, e.g., n.chains, n.burnin, n.iter |
This function performs Bayesian heritability estimation using genomic relationship matrix.
The returned value is a fitted model from jags().
Zhao JH, Luan JA, Congdon P (2018). Bayesian linear mixed models with polygenic effects. J Stat Soft 85(6):1-27
Jing Hua Zhao
## Not run: require(gap.datasets) set.seed(1234567) meyer <- within(meyer,{ y[is.na(y)] <- rnorm(length(y[is.na(y)]),mean(y,na.rm=TRUE),sd(y,na.rm=TRUE)) g1 <- ifelse(generation==1,1,0) g2 <- ifelse(generation==2,1,0) id <- animal animal <- ifelse(!is.na(animal),animal,0) dam <- ifelse(!is.na(dam),dam,0) sire <- ifelse(!is.na(sire),sire,0) }) G <- kin.morgan(meyer)$kin.matrix*2 library(regress) r <- regress(y~-1+g1+g2,~G,data=meyer) r with(r,h2G(sigma,sigma.cov)) eps <- 0.001 y <- with(meyer,y) x <- with(meyer,cbind(g1,g2)) ex <- h2.jags(y,x,G,sigma.p=0.03,sigma.r=0.014) print(ex) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.