Haplotype trend regression
Haplotype trend regression (with permutation)
htr(y,x,n.sim=0)
y |
a vector of phenotype |
x |
a haplotype table |
n.sim |
the number of permutations |
The returned value is a list containing:
f |
the F statistic for overall association |
p |
the p value for overall association |
fv |
the F statistics for individual haplotypes |
pi |
the p values for individual haplotypes |
Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum. Hered. 53:79-91
Xie R, Stram DO (2005). Asymptotic equivalence between two score tests for haplotype-specific risk in general linear models. Genet. Epidemiol. 29:186-170
adapted from emgi.cpp, a pseudorandom number seed will be added on
Dimitri Zaykin, Jing Hua Zhao
## Not run: # 26-10-03 # this is now part of demo test2<-read.table("test2.dat") y<-test2[,1] x<-test2[,-1] y<-as.matrix(y) x<-as.matrix(x) htr.test2<-htr(y,x) htr.test2 htr.test2<-htr(y,x,n.sim=10) htr.test2 # 13-11-2003 require(gap.datasets) data(apoeapoc) apoeapoc.gc<-gc.em(apoeapoc[,5:8]) y<-apoeapoc$y for(i in 1:length(y)) if(y[i]==2) y[i]<-1 htr(y,apoeapoc.gc$htrtable) # 20-8-2008 # part of the example from useR!2008 tutorial by Andrea Foulkes # It may be used beyond the generalized linear model (GLM) framework HaploEM <- haplo.em(Geno,locus.label=SNPnames) HapMat <- HapDesign(HaploEM) m1 <- lm(Trait~HapMat) m2 <- lm(Trait~1) anova(m2,m1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.