Adds a Line with a Variogram Model to a Variogram Plot
This function adds a line with a variogram model specifyed by the user to a current variogram plot. The variogram is specifyed either by passing a list with values for the variogram elements or using each argument in the function.
## S3 method for class 'variomodel' lines(x, ...) ## Default S3 method: lines.variomodel(x, cov.model, cov.pars, nugget, kappa, max.dist, scaled = FALSE, ...)
x |
a list with the values for the following components: |
cov.model |
a string with the type of the variogram function. See
documentation of |
cov.pars |
a vector or matrix with the values for the partial sill (sigmasq) and range (phi) parameters. |
nugget |
a scalar with the value of the nugget (tausq) parameter. |
kappa |
a scalar with the value of the smoothness
(kappa) parameters. Only required if |
max.dist |
maximum distance (x-axis) to compute and draw the line
representing the variogram model.
If a list is provided in |
scaled |
logical. If |
... |
arguments to be passed to the function
|
Adds a line with a variogram model to a plot.
In conjuction with plot.variogram
can be
used for instance to compare sample variograms against fitted models returned by
variofit
and/or likfit
.
A line with a variogram model is added to a plot on the current graphics device. No values are returned.
Paulo Justiniano Ribeiro Jr. paulojus@leg.ufpr.br,
Peter J. Diggle p.diggle@lancaster.ac.uk.
Further information on the package geoR can be found at:
http://www.leg.ufpr.br/geoR.
# computing and ploting empirical variogram vario <- variog(s100, max.dist = 1) plot(vario) # estimating parameters by weighted least squares vario.wls <- variofit(vario, ini = c(1, .3), fix.nugget = TRUE) # adding fitted model to the plot lines(vario.wls) # # Ploting different variogram models plot(0:1, 0:1, type="n") lines.variomodel(cov.model = "exp", cov.pars = c(.7, .25), nug = 0.3, max.dist = 1) # an alternative way to do this is: my.model <- list(cov.model = "exp", cov.pars = c(.7, .25), nugget = 0.3, max.dist = 1) lines.variomodel(my.model, lwd = 2) # now adding another model lines.variomodel(cov.m = "mat", cov.p = c(.7, .25), nug = 0.3, max.dist = 1, kappa = 1, lty = 2) # adding the so-called "nested" models # two exponential structures lines.variomodel(seq(0,1,l=101), cov.model="exp", cov.pars=rbind(c(0.6,0.15),c(0.4,0.25)), nug=0, col=2) ## exponential and spherical structures lines.variomodel(seq(0,1,l=101), cov.model=c("exp", "sph"), cov.pars=rbind(c(0.6,0.15), c(0.4,0.75)), nug=0, col=3)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.