Vertical Label Capability Stat
Draws Vertical Lables on Vertical Capability lines
stat_QC_cap_vlabels(LSL, USL, method = "xBar.rBar", show = c("LSL", "USL"), mapping = NULL, data = NULL, inherit.aes = TRUE, ...)
LSL |
numeric, Customer's lower specification limit |
USL |
numeric, Customer's Upper specification limit |
method |
string, calling the following methods:
|
show |
vector, indicating which lines to draw ie., c("LCL", "LSL", "X", "USL", "UCL")
|
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
inherit.aes |
If |
... |
Other arguments passed on to |
vertical lines for histogram and density plots.
# Load Libraries ---------------------------------------------------------- require(ggQC) require(ggplot2) # Setup Data -------------------------------------------------------------- set.seed(5555) Process1 <- data.frame(ProcessID = as.factor(rep(1,100)), Value = rnorm(100,10,1), Subgroup = rep(1:20, each=5), Process_run_id = 1:100) set.seed(5556) Process2 <- data.frame(ProcessID = as.factor(rep(2,100)), Value = rnorm(100,20, 1), Subgroup = rep(1:10, each=10), Process_run_id = 101:200) df <- rbind(Process1, Process2) ###################### ## Example 1 XmR ## ###################### ##You may need to use the r-studio Zoom for these plots or make the size of the ##stat_QC_cap_summary smaller with size = some number" method <- "XmR" # Normal Histogram XmR -------------------------------------------------------- EX1.1 <- ggplot(df[df$ProcessID == 1,], aes(x=Value, QC.Subgroup=Subgroup)) + geom_histogram(binwidth = 1, color="purple") + geom_hline(yintercept=0, color="grey") + stat_QC_cap_vlines(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=2, size=4) + scale_x_continuous(expand = expand_scale(mult = c(0.15,.8))) + ylim(0,45) #Ex1.1 # Facet Histogram XmR ----------------------------------------------------- EX1.2 <- ggplot(df[order(df$Process_run_id),], aes(x=Value, QC.Subgroup=Subgroup, color=ProcessID)) + geom_histogram(binwidth = 1) + geom_hline(yintercept=0, color="grey") + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"),#show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) + facet_grid(.~ProcessID) + ylim(0,45) #EX1.2 # Facet Density Plot XmR ------------------------------------------------- EX1.3 <- ggplot(df[df$ProcessID == 1,], aes(x=Value, QC.Subgroup=Subgroup)) + geom_density(bw = .4, fill="purple", trim=TRUE) + geom_hline(yintercept=0, color="grey") + stat_QC_cap_vlines(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=2, size=4) + scale_x_continuous(expand = expand_scale(mult = c(0.15,.8))) + ylim(0,.5) #EX1.3 # Facet Density Plot XmR -------------------------------------------------- EX1.4 <- ggplot(df[order(df$Process_run_id),], aes(x=Value, QC.Subgroup=Subgroup, color=ProcessID)) + geom_density(bw = .4, fill="grey", trim=TRUE ) + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) + # geom_hline(yintercept=0, color="black") + facet_grid(.~ProcessID) + ylim(0,.5) #EX1.4 ######################################## ## Example 2: xBar.rBar or xBar.sBar ## ######################################## method <- "xBar.rBar" #Alternativly Use "xBar.sBar" if desired # Single Histogram xBar.rBar ---------------------------------------------- EX2.1 <- ggplot(df[df$ProcessID==1,], aes(x=Value, QC.Subgroup=Subgroup)) + geom_histogram(binwidth = 1) + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) #+ #EX2.1 # Faceted Histogram xBar.rBar --------------------------------------------- EX2.2 <- ggplot(df, aes(x=Value, QC.Subgroup=Subgroup)) + geom_histogram(binwidth = 1) + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8)))+ facet_grid(.~ProcessID, scales="free_x") #EX2.2 # Single Density xBar.rBar ---------------------------------------------- EX2.3 <- ggplot(df[df$ProcessID==1,], aes(x=Value, QC.Subgroup=Subgroup)) + geom_density(bw = .4, fill="grey", alpha=.4) + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) #+ #EX2.3 # Faceted Density xBar.rBar --------------------------------------------- EX2.4 <- ggplot(df, aes(x=Value, QC.Subgroup=Subgroup)) + geom_density(bw = .4, fill="grey", alpha=.4) + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8)))+ facet_grid(.~ProcessID, scales="free_x") #EX2.4 ############################### ## Example 3: xBar.rMedian ## ############################### ## Plots involving medians should give warning: "median based QC methods represent ## at best *potential* process capability" ##These plot work the same as in examples 2.X; below is an example. method <- "xBar.rMedian" EX3.1 <- ggplot(df[order(df$Process_run_id),], aes(x=Value, QC.Subgroup=Run)) + geom_histogram(binwidth = 1) + stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) + stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) + stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3, #show="ALL", #show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk", # "LCL", "X", "UCL", "Sig"), #show=c("Sig","TOL", "DNS"), show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"), color="black", digits=4, size=4) + scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) #EX3.1
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.