Create a plot matrix of posterior simulations
Pairs style plots to evaluate posterior correlations among parameters.
ggs_pairs(D, family = NA, greek = FALSE, ...)
D |
Data frame with the simulations. |
family |
Name of the family of parameters to plot, as given by a character vector or a regular expression. A family of parameters is considered to be any group of parameters with the same name but different numerical value between square brackets (as beta[1], beta[2], etc). |
greek |
Logical value indicating whether parameter labels have to be parsed to get Greek letters. Defaults to false. |
... |
Arguments to be passed to |
A ggpairs
object that creates a plot matrix consisting of univariate density plots on the diagonal, correlation estimates in upper triangular elements, and scatterplots in lower triangular elements.
Fernández-i-Marín, Xavier (2016) ggmcmc: Analysis of MCMC Samples and Bayesian Inference. Journal of Statistical Software, 70(9), 1-20. doi:10.18637/jss.v070.i09
## Not run: library(GGally) data(linear) # default ggpairs plot ggs_pairs(ggs(s)) # change alpha transparency of points ggs_pairs(ggs(s), lower=list(continuous = wrap("points", alpha = 0.2))) # with too many points, try contours instead ggs_pairs(ggs(s), lower=list(continuous="density")) # histograms instead of univariate densities on diagonal ggs_pairs(ggs(s), diag=list(continuous="barDiag")) # coloring results according to chains ggs_pairs(ggs(s), mapping = aes(color = Chain)) # custom points on lower panels, black contours on upper panels ggs_pairs(ggs(s), upper=list(continuous = wrap("density", color = "black")), lower=list(continuous = wrap("points", alpha = 0.2, shape = 1))) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.