Expected value, variance-covariance, skewness and kurtosis of generalized hyperbolic distributions
The function mean
returns the expected value. The function
vcov
returns the variance in the univariate case and the
variance-covariance matrix in the multivariate case. The functions
ghyp.skewness
and ghyp.kurtosis
only work for univariate
generalized hyperbolic distributions.
## S4 method for signature 'ghyp' mean(x) ## S4 method for signature 'ghyp' vcov(object) ghyp.skewness(object) ghyp.kurtosis(object)
x, object |
An object inheriting from class
|
The functions ghyp.skewness
and ghyp.kurtosis
are based
on the function ghyp.moment
. Numerical integration will
be used in case a Student.t or variance gamma distribution is
submitted.
Either the expected value, variance, skewness or kurtosis.
David Luethi
ghyp
, ghyp-class
, Egig
to
compute the expected value and the variance of the generalized inverse gaussian
mixing distribution distributed and its special cases.
## Univariate: Parametric vg.dist <- VG(lambda = 1.1, mu = 10, sigma = 10, gamma = 2) mean(vg.dist) vcov(vg.dist) ghyp.skewness(vg.dist) ghyp.kurtosis(vg.dist) ## Univariate: Empirical vg.sim <- rghyp(10000, vg.dist) mean(vg.sim) var(vg.sim) ## Multivariate: Parametric vg.dist <- VG(lambda = 0.1, mu = c(55, 33), sigma = diag(c(22, 888)), gamma = 1:2) mean(vg.dist) vcov(vg.dist) ## Multivariate: Empirical vg.sim <- rghyp(50000, vg.dist) colMeans(vg.sim) var(vg.sim)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.