Linear transformation and extraction of generalized hyperbolic distributions
The transform
function can be used to linearly transform
generalized hyperbolic distribution objects (see Details). The
extraction operator [
extracts some margins of a multivariate
generalized hyperbolic distribution object.
## S4 method for signature 'ghyp' transform(`_data`, summand, multiplier) ## S3 method for class 'ghyp' x[i = c(1, 2)]
If X is GH distributed, transform
gives the
distribution object of “multiplier * X + summand”, where X is
the argument named _data
.
If the object is of class mle.ghyp
,
iformation concerning the fitting procedure
(cf. ghyp.fit.info
) will be lost as the return value is an
object of class ghyp
.
An object of class ghyp
.
David Luethi
scale
, ghyp
,
fit.ghypuv
and fit.ghypmv
for constructors
of ghyp
objects.
## Mutivariate generalized hyperbolic distribution multivariate.ghyp <- ghyp(sigma=var(matrix(rnorm(9),ncol=3)), mu=1:3, gamma=-2:0) ## Dimension reduces to 2 transform(multivariate.ghyp, multiplier=matrix(1:6,nrow=2), summand=10:11) ## Dimension reduces to 1 transform(multivariate.ghyp, multiplier=1:3) ## Simple transformation transform(multivariate.ghyp, summand=100:102) ## Extract some dimension multivariate.ghyp[1] multivariate.ghyp[c(1, 3)]
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.