Linear transformation and extraction of generalized hyperbolic distributions
The transform function can be used to linearly transform
generalized hyperbolic distribution objects (see Details). The
extraction operator [ extracts some margins of a multivariate
generalized hyperbolic distribution object.
## S4 method for signature 'ghyp' transform(`_data`, summand, multiplier) ## S3 method for class 'ghyp' x[i = c(1, 2)]
If X is GH distributed, transform gives the
distribution object of “multiplier * X + summand”, where X is
the argument named _data.
If the object is of class mle.ghyp,
iformation concerning the fitting procedure
(cf. ghyp.fit.info) will be lost as the return value is an
object of class ghyp.
An object of class ghyp.
David Luethi
scale, ghyp,
fit.ghypuv and fit.ghypmv for constructors
of ghyp objects.
## Mutivariate generalized hyperbolic distribution multivariate.ghyp <- ghyp(sigma=var(matrix(rnorm(9),ncol=3)), mu=1:3, gamma=-2:0) ## Dimension reduces to 2 transform(multivariate.ghyp, multiplier=matrix(1:6,nrow=2), summand=10:11) ## Dimension reduces to 1 transform(multivariate.ghyp, multiplier=1:3) ## Simple transformation transform(multivariate.ghyp, summand=100:102) ## Extract some dimension multivariate.ghyp[1] multivariate.ghyp[c(1, 3)]
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.