Comparison of nested Generalized Linear Models
Allows to compare nested generalized linear models using Wald, score, gradient, and likelihood ratio tests.
anova2( object, ..., test = c("wald", "lrt", "score", "gradient"), verbose = TRUE )
object |
an object of the class glm which is obtained from the fit of a generalized linear model. |
... |
another objects of the class glm which are obtained from the fit of generalized linear models. |
test |
an (optional) character string indicating the required type of test. The available options are: Wald ("wald"), Rao's score ("score"), Terrell's gradient ("gradient"), and likelihood ratio ("lrt") tests. By default, |
verbose |
an (optional) logical indicating if should the report of results be printed. By default, |
The Wald, Rao's score and Terrell's gradient tests are performed using the expected Fisher information matrix.
A matrix with three columns which contains the following:
Chi:
The value of the statistic of the test.
Df:
The number of degrees of freedom.
Pr(>Chi):
The p-value of the test computed using the Chi-square distribution.
Buse A. (1982) The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note. The American Statistician 36, 153-157.
Terrell G.R. (2002) The gradient statistic. Computing Science and Statistics 34, 206 – 215.
## Example 1 Auto <- ISLR::Auto fit1 <- glm(mpg ~ weight, family=inverse.gaussian("log"), data=Auto) fit2 <- update(fit1, . ~ . + horsepower) fit3 <- update(fit2, . ~ . + horsepower:weight) anova2(fit1, fit2, fit3, test="lrt") anova2(fit1, fit2, fit3, test="score") anova2(fit1, fit2, fit3, test="wald") anova2(fit1, fit2, fit3, test="gradient") ## Example 2 burn1000 <- aplore3::burn1000 mod <- death ~ age + tbsa + inh_inj fit1 <- glm(mod, family=binomial("logit"), data=burn1000) fit2 <- update(fit1, . ~ . + inh_inj + age*inh_inj + tbsa*inh_inj) anova2(fit1, fit2, test="lrt") anova2(fit1, fit2, test="score") anova2(fit1, fit2, test="wald") anova2(fit1, fit2, test="gradient") ## Example 3 fit <- glm(lesions ~ 1 + time, family=poisson("log"), data=aucuba) anova2(fit, test="lrt") anova2(fit, test="score") anova2(fit, test="wald") anova2(fit, test="gradient")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.