Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RJC

Rotnitzky–Jewell's Criterion for Generalized Estimating Equations


Description

Computes the Rotnitzky–Jewell's criterion (RJC) for one or more objects of the class glmgee.

Usage

RJC(...)

Arguments

...

one or several objects of the class glmgee which are obtained from the fit of generalized estimating equations.

Value

A matrix with the values of the RJC for each glmgee object provided in the input.

References

Hin L-Y, Carey V.J., Wang Y-G (2007) Criteria for Working–Correlation–Structure Selection in GEE: Assessment via Simulation. The American Statistician 61, 360–364.

See Also

Examples

## Example 1
mod <- size ~ poly(days,4) + treat
fit1 <- glmgee(mod, id=tree, family=Gamma("log"), data=spruce, corstr="AR-1")
fit2 <- update(fit1, corstr="Exchangeable")
fit3 <- update(fit1, corstr="Stationary-M-dependent(2)")
fit4 <- update(fit1, corstr="Independence")
RJC(fit1, fit2, fit3, fit4)

## Example 2
mod <- dep ~ visit + group
fit1 <- glmgee(mod, id=subj, family=gaussian, corstr="Exchangeable", data=depression)
fit2 <- update(fit1, corstr="Exchangeable")
fit3 <- update(fit1, corstr="Non-Stationary-M-dependent(2)")
fit4 <- update(fit1, corstr="Independence")
RJC(fit1, fit2, fit3, fit4)

## Example 3
mod <- depressd ~ visit + group
fit1 <- glmgee(mod, id=subj, family=binomial, corstr="Exchangeable", data=depression)
fit2 <- update(fit1, corstr="Exchangeable")
fit3 <- update(fit1, corstr="Stationary-M-dependent(2)")
fit4 <- update(fit1, corstr="Independence")
RJC(fit1, fit2, fit3, fit4)

glmtoolbox

Set of Tools to Data Analysis using Generalized Linear Models

v0.1.0
GPL-2 | GPL-3
Authors
Luis Hernando Vanegas [aut, cre], Luz Marina Rondón [aut], Gilberto A. Paula [aut]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.