Numerical Goodness-of-fit measures
Numerical goodness-of-fit measures between sim
and obs
, with treatment of missing values. Several performance indices for comparing two vectors, matrices or data.frames
gof(sim, obs, ...) ## Default S3 method: gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7, hQ.thr=0.2, digits=2,...) ## S3 method for class 'matrix' gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7, hQ.thr=0.2, digits=2,...) ## S3 method for class 'data.frame' gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7, hQ.thr=0.2, digits=2,...) ## S3 method for class 'zoo' gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7, hQ.thr=0.2, digits=2,...)
sim |
numeric, zoo, matrix or data.frame with simulated values |
obs |
numeric, zoo, matrix or data.frame with observed values |
na.rm |
a logical value indicating whether 'NA' should be stripped before the computation proceeds. |
do.spearman |
logical. Indicates if the Spearman correlation has to be computed. The default is FALSE. |
do.pbfdc |
logical. Indicates if the Percent Bias in the Slope of the midsegment of the Flow Duration Curve ( |
j |
argument passed to the |
norm |
argument passed to the |
s |
argument passed to the |
method |
argument passed to the |
lQ.thr |
argument passed to the (optional) |
hQ.thr |
argument passed to the (optional) |
digits |
decimal places used for rounding the goodness-of-fit indexes. |
... |
further arguments passed to or from other methods. |
The output of the gof
function is a matrix with one column only, and the following rows:
me |
Mean Error |
mae |
Mean Absolute Error |
mse |
Mean Squared Error |
rmse |
Root Mean Square Error |
nrmse |
Normalized Root Mean Square Error ( -100% <= nrms <= 100% ) |
PBIAS |
Percent Bias |
pbiasfdc |
PBIAS in the slope of the midsegment of the Flow Duration Curve |
RSR |
Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms / sd(obs). ( 0 <= RSR <= +Inf ) |
rSD |
Ratio of Standard Deviations, rSD = sd(sim) / sd(obs) |
NSE |
Nash-Sutcliffe Efficiency ( -Inf <= NSE <= 1 ) |
mNSE |
Modified Nash-Sutcliffe Efficiency |
rNSE |
Relative Nash-Sutcliffe Efficiency |
d |
Index of Agreement ( 0 <= d <= 1 ) |
d1 |
Modified Index of Agreement |
rd |
Relative Index of Agreement |
cp |
Persistence Index ( 0 <= PI <= 1 ) |
r |
Pearson Correlation coefficient ( -1 <= r <= 1 ) |
r.Spearman |
Spearman Correlation coefficient ( -1 <= r.Spearman <= 1 ) |
R2 |
Coefficient of Determination ( 0 <= R2 <= 1 ). |
bR2 |
R2 multiplied by the coefficient of the regression line between |
KGE |
Kling-Gupta efficiency between |
VE |
Volumetric efficiency between |
obs
and sim
has to have the same length/dimension.
Missing values in obs
and/or sim
can be removed before the computations, depending on the value of na.rm
.
Although r
and r2
have been widely used for model evaluation, these statistics are over-sensitive to outliers and insensitive to additive and proportional differences between model predictions and measured data (Legates and McCabe, 1999)
Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>
Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241
Krause P., Boyle D.P., and B\"ase F., Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences 5 (2005), pp. 89–97
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900
Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic Models: Combining the Strengths of Manual and Automatic Methods, Water Resour. Res., 36(12), 3663–3674
Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model 2. Applications and Results, Water Resour. Res., 16(6), 1034–1044
J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion of principles, J. Hydrol. 10 (1970), pp. 282–290
Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23–48
Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resour. Res., 44, W09417, doi:10.1029/2007WR006716
Hoshin V. Gupta, Harald Kling, Koray K. Yilmaz, Guillermo F. Martinez. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, Volume 377, Issues 1-2, 20 October 2009, Pages 80-91. DOI: 10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694
Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723-2725. doi: 10.1002/hyp.7072
sim <- 1:10 obs <- 1:10 gof(sim, obs) sim <- 2:11 obs <- 1:10 gof(sim, obs) ################## # Loading daily streamflows of the Ega River (Spain), from 1961 to 1970 data(EgaEnEstellaQts) obs <- EgaEnEstellaQts # Generating a simulated daily time series, initially equal to the observed series sim <- obs # Getting the numeric goodness of fit for the "best" (unattainable) case gof(sim=sim, obs=obs) # Randomly changing the first 2000 elements of 'sim', by using a normal distribution # with mean 10 and standard deviation equal to 1 (default of 'rnorm'). sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10) # Getting the new numeric goodness of fit gof(sim=sim, obs=obs) # Storing a matrix object with all the GoFs: g <- gof(sim, obs) # Getting only the RMSE g[4,1] g["RMSE",] ## Not run: # Writing all the GoFs into a TXT file write.table(g, "GoFs.txt", col.names=FALSE, quote=FALSE) # Getting the graphical representation of 'obs' and 'sim' along with the # numeric goodness of fit ggof(sim=sim, obs=obs) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.