Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

f15.3.1

Hypergeometric function using Euler's integral representation


Description

Hypergeometric function using Euler's integral representation, evaluated using numerical contour integrals.

Usage

f15.3.1(A, B, C, z, h = 0)

Arguments

A,B,C

Parameters

z

Primary complex argument

h

specification for the path to be taken; see details

Details

Argument h specifies the path to be taken (the path has to avoid the point 1/z). If h is real and of length 1, the path taken comprises two straight lines: one from 0 to 0.5+hi and one from 0.5+hi to 1 (if h=0 the integration is performed over a single segment).

Otherwise, the integration is performed over length(h)+1 segments: 0 to h[1], then h[i] to h[i+1] for 1 <= i <= n-1 and finally h[n] to 1.

See examples and notes sections below.

Note

The Mellin-Barnes form is not yet coded up.

Author(s)

Robin K. S. Hankin

References

M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover

See Also

Examples

# For |z| <1 the path can be direct:
f15.3.1(2,1,2,-1/2) -2/3

# cf identity 07.23.03.0046.01 of Hypergeometric2F1.pdf with b=1




f <- function(h){f15.3.1(1,2,3, z=2, h=h)}

# Winding number [around 1/z] matters:
f(0.5)
f(c(1-1i, 1+1i, -2i))

# Accuracy isn't too bad; compare numerical to analytical result :
f(0.5) - (-1+1i*pi/2)

hypergeo

The Gauss Hypergeometric Function

v1.2-13
GPL-2
Authors
Robin K. S. Hankin
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.