Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

hypergeo_contfrac

Continued fraction expansion of the hypergeometric function


Description

Continued fraction expansion of the hypergeometric and generalized hypergeometric functions using continued fraction expansion.

Usage

hypergeo_contfrac(A, B, C, z, tol = 0, maxiter = 2000)
genhypergeo_contfrac_single(U, L, z, tol = 0, maxiter = 2000)

Arguments

A,B,C

Parameters (real or complex)

U,L

In function genhypergeo_contfrac(), upper and lower arguments as in genhypergeo()

z

Complex argument

tol

tolerance (passed to GCF())

maxiter

maximum number of iterations

Details

These functions are included in the package in the interests of completeness, but it is not clear when it is advantageous to use continued fraction form rather than the series form.

Note

The continued fraction expression is the RHS identity 07.23.10.0001.01 of Hypergeometric2F1.pdf.

The function sometimes fails to converge to the correct value but no warning is given.

Function genhypergeo_contfrac() is documented under genhypergeo.Rd.

Author(s)

Robin K. S. Hankin

References

See Also

Examples

hypergeo_contfrac(0.3 , 0.6 , 3.3 , 0.1+0.3i)
# Compare Maple: 1.0042808294775511972+0.17044041575976110947e-1i

genhypergeo_contfrac_single(U=0.2 , L=c(9.9,2.7,8.7) , z=1+10i)
# (powerseries does not converge)
# Compare Maple: 1.0007289707983569879 + 0.86250714217251837317e-2i

hypergeo

The Gauss Hypergeometric Function

v1.2-13
GPL-2
Authors
Robin K. S. Hankin
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.