Various functions taken from the Wolfram Functions Site
Various functions taken from the Wolfram Functions Site
w07.23.06.0026.01(A, n, m, z, tol = 0, maxiter = 2000, method = "a") w07.23.06.0026.01_bit1(A, n, m, z, tol = 0) w07.23.06.0026.01_bit2(A, n, m, z, tol = 0, maxiter = 2000) w07.23.06.0026.01_bit3_a(A, n, m, z, tol = 0) w07.23.06.0026.01_bit3_b(A, n, m, z, tol = 0) w07.23.06.0026.01_bit3_c(A, n, m, z, tol = 0) w07.23.06.0029.01(A, n, m, z, tol = 0, maxiter = 2000) w07.23.06.0031.01(A, n, m, z, tol = 0, maxiter = 2000) w07.23.06.0031.01_bit1(A, n, m, z, tol = 0, maxiter = 2000) w07.23.06.0031.01_bit2(A, n, m, z, tol = 0, maxiter = 2000)
A |
Parameter of hypergeometric function |
m,n |
Integers |
z |
Primary complex argument |
tol,maxiter |
Numerical arguments as per |
method |
Character, specifying method to be used |
The method
argument is described at f15.3.10
. All
functions' names follow the conventions in
Hypergeometric2F1.pdf
.
Function w07.23.06.0026.01(A, n, m, z)
returns
hypergeo(A,A+n,A+m,z) where m and
n are nonnegative integers with m>=n.
Function w07.23.06.0029.01(A, n, m, z)
returns
hypergeo(A,A+n,A-m,z).
Function w07.23.06.0031.01(A, n, m, z)
returns
hypergeo(A,A+n,A-m,z) with m<=n.
These functions use the psigamma()
function which does not yet
take complex arguments; this means that complex values for A
are not supported. I'm working on it.
Robin K. S. Hankin
# Here we catch some answers from Maple (jjM) and compare it with R's: jjM <- 0.95437201847068289095 + 0.80868687461954479439i # Maple's answer jjR <- w07.23.06.0026.01(A=1.1 , n=1 , m=4 , z=1+1i) # [In practice, one would type 'hypergeo(1.1, 2.1, 5.1, 1+1i)'] stopifnot(Mod(jjM - jjR) < 1e-10) jjM <- -0.25955090546083991160e-3 - 0.59642767921444716242e-3i jjR <- w07.23.06.0029.01(A=4.1 , n=1 , m=1 , z=1+4i) # [In practice, one would type 'hypergeo(4.1, 3.1, 5.1, 1+1i)'] stopifnot(Mod(jjM - jjR) < 1e-15) jjM <- 0.33186808222278923715e-1 - 0.40188208572232037363e-1i jjR <- w07.23.06.0031.01(6.7,2,1,2+1i) # [In practice, one would type 'hypergeo(6.7, 8.7, 7.7, 2+1i)'] stopifnot(Mod(jjM - jjR) < 1e-10)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.