Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

BIC.ibr

Information Criterion for ibr


Description

Functions calculating the Bayesian Informative Criterion , the Generalized Cross Validation criterion and the Corrected Akaike information criterion.

Usage

## S3 method for class 'ibr'
BIC(object, ...)

## S3 method for class 'ibr'
GCV(object, ...)

## S3 method for class 'ibr'
AICc(object, ...)

Arguments

object

A fitted model object of class ibr.

...

Only for compatibility purpose with BIC of nlme package.

Details

The ibr method for BIC, BIC.ibr() calculates log(sigma^2)+log(n)*df/n, where df is the trace of the smoother.

The ibr method for GCV, GCV.ibr() calculates log(sigma^2)-log(1-*df/n)

The ibr method for AICc, AICc.ibr() calculates log(sigma^2)+1+(2*(df+1))/(n-df-2).

Value

Returns a numeric value with the corresponding BIC, GCV or AICc.

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober.

References

Hurvich, C. M., Simonoff J. S. and Tsai, C. L. (1998) Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion. Journal of the Royal Statistical Society, Series B, 60, 271-293 .

See Also

Examples

## Not run: data(ozone, package = "ibr")
res.ibr <- ibr(ozone[,-1],ozone[,1])
BIC(res.ibr)
GCV(res.ibr)
AICc(res.ibr)

## End(Not run)

ibr

Iterative Bias Reduction

v2.0-3
GPL (>= 2)
Authors
Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober
Initial release
2017-04-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.