Computes the semi-kernel of Duchon splines
The function DuchonQ
computes the semi-kernel of Duchon splines. This function is not intended to be used directly.
DuchonQ(x,xk,m=2,s=0,symmetric=TRUE)
x |
A numeric matrix of explanatory variables, with n rows and p columns. |
xk |
A numeric matrix of explanatory variables, with nk rows and p columns. |
m |
Order of derivatives. |
s |
Exponent for the weight function. |
symmetric |
Boolean: if |
The semi-kernel evaluated.
Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober.
Duchon, J. (1977) Splines minimizing rotation-invariant semi-norms in Solobev spaces. in W. Shemp and K. Zeller (eds) Construction theory of functions of several variables, 85-100, Springer, Berlin.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.