Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fittedS1

Evaluate the fit for iterative bias reduction model


Description

The function evaluates the fit for iterative bias reduction model for iteration k. This function is not intended to be used directly.

Usage

fittedS1(n,U,tUy,eigenvaluesS1,ddlmini,k)

Arguments

n

The number of observations.

U

The the matrix of eigen vectors of the symmetric smoothing matrix S.

tUy

The transpose of the matrix of eigen vectors of the symmetric smoothing matrix S times the vector of observation y.

eigenvaluesS1

Vector of the eigenvalues of the symmetric smoothing matrix S.

ddlmini

The number of eigen values of S equal to 1.

k

A numeric vector which gives the number of iterations

Details

see the reference for detailed explanation of computation of iterative bias reduction smoother

Value

Returns a vector containing the fit

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober

References

Cornillon, P.-A.; Hengartner, N.; Jegou, N. and Matzner-Lober, E. (2012) Iterative bias reduction: a comparative study. Statistics and Computing, 23, 777-791.

Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2013) Recursive bias estimation for multivariate regression smoothers Recursive bias estimation for multivariate regression smoothers. ESAIM: Probability and Statistics, 18, 483-502.

Cornillon, P.-A.; Hengartner, N. and Matzner-Lober, E. (2017) Iterative Bias Reduction Multivariate Smoothing in R: The ibr Package. Journal of Statistical Software, 77, 1–26.

See Also


ibr

Iterative Bias Reduction

v2.0-3
GPL (>= 2)
Authors
Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober
Initial release
2017-04-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.