Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

predict.npregress

Predicted values using using local polynomials


Description

Predicted values from a local polynomials of degree less than 2. See locpoly for fast binned implementation over an equally-spaced grid of local polynomial (gaussian kernel only)
Missing values are not allowed.

Usage

## S3 method for class 'npregress'
predict(object, newdata, interval=
 c("none", "confidence", "prediction"), deriv=FALSE, ...)

Arguments

object

Object of class npregress.

newdata

An optional vector of values to be predicted. If omitted, the fitted values are used.

interval

Type of interval calculation. Only none is currently avalaible.

deriv

Bolean. If TRUE it returns the first derivative of the local polynomial (of degree1).

...

Further arguments passed to or from other methods.

Value

Produces a vector of predictions. If deriv is TRUE the value is a named list with components: yhat which contains predictions and (if relevant) deriv the first derivative of the local polynomial of degree 1.

Author(s)

Pierre-Andre Cornillon, Nicolas Hengartner and Eric Matzner-Lober.

References

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.

See Also

Examples

f <- function(x){sin(5*pi*x)}
n <- 100
x <- runif(n)
z <- f(x)
sigma2 <- 0.05*var(z)
erreur<-rnorm(n,0,sqrt(sigma2))
y<-z+erreur
grid <- seq(min(x),max(x),length=500)
res <- npregress(x,y,bandwidth=0.02,control.par=list(degree=1))
plot(x,y)
lines(grid,predict(res,grid))

ibr

Iterative Bias Reduction

v2.0-3
GPL (>= 2)
Authors
Pierre-Andre Cornillon, Nicolas Hengartner, Eric Matzner-Lober
Initial release
2017-04-28

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.