Estimating the MCAR mechanism in a sample.
This function allows estimating the MCAR data mechanism, i.e. the probability to be MCAR given that the value is missing in function of the intensity level, from an estimation of a mixture model of MNAR and MCAR values (see estim.mix
function).
miss.mcar.process(abs,pi_mcar,F_tot,F_na)
abs |
The interval on which is estimated the MCAR data mechanism. |
pi_mcar |
An estimation of the proportion of MCAR values. |
F_tot |
An estimation of the cumulative distribution function of the complete values on the interval |
F_na |
An estimation of the cumulative distribution function of the missing values on the interval |
A list composed of:
abs |
The interval on which is estimated the MCAR data mechanism. |
p |
The estimated probability to be MCAR given that the value is missing on the interval |
Quentin Giai Gianetto <quentin2g@yahoo.fr>
#Simulating data res.sim=sim.data(nb.pept=2000,nb.miss=600,pi.mcar=0.2,para=0.5,nb.cond=2,nb.repbio=3, nb.sample=5,m.c=25,sd.c=2,sd.rb=0.5,sd.r=0.2); #Imputation of missing values with the slsa algorithm dat.slsa=impute.slsa(tab=res.sim$dat.obs,conditions=res.sim$condition,repbio=res.sim$repbio); #Estimation of the mixture model res=estim.mix(tab=res.sim$dat.obs, tab.imp=dat.slsa, conditions=res.sim$condition); #Estimating the MCAR mechanism in the first replicate mcp=miss.mcar.process(res$abs.mod,res$pi.mcar[1],res$F.tot[,1],res$F.na[,1]) plot(mcp$abs,mcp$p,ty="l",xlab="Intensity values",ylab="Estimated probability to be MCAR")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.