Estimating the missing data mechanism in a sample.
This function allows estimating the missing data mechanism, i.e. the probability to be missing in function of the intensity level, from an estimation of a mixture model of MNAR and MCAR values (see estim.mix
function).
miss.total.process(abs,pi_na,F_na,F_tot)
abs |
The interval on which is estimated the missing data mechanism. |
pi_na |
The proportion of missing values. |
F_na |
An estimation of the cumulative distribution function of the missing values on the interval |
F_tot |
An estimation of the cumulative distribution function of the complete values on the interval |
A list composed of:
abs |
The interval on which is estimated the missing data mechanism. |
p |
The estimated probability to be missing in function of the intensity level. |
Quentin Giai Gianetto <quentin2g@yahoo.fr>
#Simulating data res.sim=sim.data(nb.pept=2000,nb.miss=600); #Imputation of missing values with the slsa algorithm dat.slsa=impute.slsa(tab=res.sim$dat.obs,conditions=res.sim$condition,repbio=res.sim$repbio); #Estimation of the mixture model res=estim.mix(tab=res.sim$dat.obs, tab.imp=dat.slsa, conditions=res.sim$condition); #Estimating the missing mechanism in the first replicate mtp=miss.total.process(res$abs.mod,res$pi.na[1],res$F.na[,1],res$F.tot[,1]) plot(mtp$abs,mtp$p,ty="l",xlab="Intensity values",ylab="Estimated probability to be missing")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.