Imputation of missing entries by 0.
This function performs the trivial imputation of missing values by 0. Is is only used for comparison purposes.
impute.ZERO(dataSet.mvs)
dataSet.mvs |
A data matrix containing left-censored missing data. |
A complete expression data matrix with missing values imputed.
Cosmin Lazar
# generate expression data matrix
exprsDataObj = generate.ExpressionData(nSamples1 = 6, nSamples2 = 6,
meanSamples = 0, sdSamples = 0.2,
nFeatures = 1000, nFeaturesUp = 50, nFeaturesDown = 50,
meanDynRange = 20, sdDynRange = 1,
meanDiffAbund = 1, sdDiffAbund = 0.2)
exprsData = exprsDataObj[[1]]
# insert 15% missing data with 100% missing not at random
m.THR = quantile(exprsData, probs = 0.15)
sd.THR = 0.1
MNAR.rate = 100
exprsData.MD.obj = insertMVs(exprsData,m.THR,sd.THR,MNAR.rate)
exprsData.MD = exprsData.MD.obj[[2]]
# perform missing data imputation
exprsData.imputed = impute.ZERO(exprsData.MD)
## Not run:
hist(exprsData[,1])
hist(exprsData.MD[,1])
hist(exprsData.imputed[,1])
## End(Not run)
## The function is currently defined as
function (dataSet.mvs)
{
dataSet.imputed = dataSet.mvs
dataSet.imputed[which(is.na(dataSet.mvs))] = 0
return(dataSet.imputed)
}Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.