Layer/Model configuration
A layer config is an object returned from get_config() that contains the
configuration of a layer or model. The same layer or model can be
reinstantiated later (without its trained weights) from this configuration
using from_config(). The config does not include connectivity information,
nor the class name (those are handled externally).
get_config(object) from_config(config)
object |
Layer or model object |
config |
Object with layer or model configuration |
get_config() returns an object with the configuration,
from_config() returns a re-instantation of hte object.
Objects returned from get_config() are not serializable. Therefore,
if you want to save and restore a model across sessions, you can use the
model_to_json() or model_to_yaml() functions (for model configuration
only, not weights) or the save_model_hdf5() function to save the model
configuration and weights to a file.
Other model functions:
compile.keras.engine.training.Model(),
evaluate.keras.engine.training.Model(),
evaluate_generator(),
fit.keras.engine.training.Model(),
fit_generator(),
get_layer(),
keras_model_sequential(),
keras_model(),
multi_gpu_model(),
pop_layer(),
predict.keras.engine.training.Model(),
predict_generator(),
predict_on_batch(),
predict_proba(),
summary.keras.engine.training.Model(),
train_on_batch()
Other layer methods:
count_params(),
get_input_at(),
get_weights(),
reset_states()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.