~ Function: generateArtificialLongData3d (or gald3d) ~
This function builp up an artificial longitudinal data set (joint
trajectories) an turn them
into an object of class ClusterLongData.
gald3d(nbEachClusters=50,time=0:10,varNames=c("V","T"),
meanTrajectories=list(function(t){c(0,0)},
function(t){c(10,10)},function(t){c(10-t,10-t)}),
personalVariation=function(t){c(rnorm(1,0,2),rnorm(1,0,2))},
residualVariation=function(t){c(rnorm(1,0,2),rnorm(1,0,2))},
decimal=2,percentOfMissing=0)
generateArtificialLongData3d(nbEachClusters=50,time=0:10,varNames=c("V","T"),
meanTrajectories=list(function(t){c(0,0)},
function(t){c(10,10)},function(t){c(10-t,10-t)}),
personalVariation=function(t){c(rnorm(1,0,2),rnorm(1,0,2))},
residualVariation=function(t){c(rnorm(1,0,2),rnorm(1,0,2))},
decimal=2,percentOfMissing=0)nbEachClusters |
|
time |
|
varNames |
|
meanTrajectories |
|
personalVariation |
|
residualVariation |
|
decimal |
|
percentOfMissing |
|
generateArtificialLongData3d (gald3d in short) is a
function that contruct a set of artificial joint longitudinal data.
Each individual is considered as belonging to a group. This group
follows a theoretical trajectory, function of time.
These functions (one per group) are given via the argument meanTrajectories.
Within a group, the individual undergoes individal
variations. Individual variations are given via the argument residualVariation.
The number of individuals in each group is given by nbEachClusters.
Finally, it is possible to add missing values randomly (MCAR) striking the
data thanks to percentOfMissing.
Object of class ClusterLongData.
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011
#####################
### Default example
ex1 <- generateArtificialLongData3d()
plot3d(ex1,parTraj=parTRAJ(col=rep(2:4,each=50)))
#####################
### 4 lines with unbalanced groups
ex2 <- generateArtificialLongData3d(
nbEachClusters=c(5,10,20,40),
meanTrajectories=list(
function(t)c(t,t^3/100),
function(t)c(0,t),
function(t)c(t,t),
function(t)c(0,t^3/100)
),
residualVariation = function(t){c(rnorm(1,0,1),rnorm(1,0,1))}
)
plot3d(ex2,parTraj=parTRAJ(col=rep(1:4,time=c(5,10,20,40))))Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.