Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

map.kohonen

Map data to a supervised or unsupervised SOM


Description

Map a data matrix onto a trained SOM.

Usage

## S3 method for class 'kohonen'
map(x, newdata, whatmap = NULL, user.weights = NULL,
                      maxNA.fraction = x$maxNA.fraction, ...)

Arguments

x

An object of class kohonen.

newdata

list of data matrices (numerical) of factors, equal to the data argument of the supersom function. No data.frame objects are allowed.

whatmap, user.weights, maxNA.fraction

parameters that usually will be taken from the x object, but can be supplied by the user as well. Note that it is not possible to change distance functions from the ones used in training the map. See supersom for more information.

...

Currently ignored.

Value

A list with elements

unit.classif

a vector of units that are closest to the objects in the data matrix.

dists

distances of the objects to the closest units. Distance measures are the same ones used in training the map.

whatmap,weights

Values used for these arguments.

Author(s)

Ron Wehrens

See Also

Examples

data(wines)
set.seed(7)

training <- sample(nrow(wines), 150)
Xtraining <- scale(wines[training, ])
somnet <- som(Xtraining, somgrid(5, 5, "hexagonal"))

map(somnet,
    scale(wines[-training, ],
          center=attr(Xtraining, "scaled:center"),
          scale=attr(Xtraining, "scaled:scale")))

kohonen

Supervised and Unsupervised Self-Organising Maps

v3.0.10
GPL (>= 2)
Authors
Ron Wehrens and Johannes Kruisselbrink
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.