Cluster longitudinal data over k folds
Apply k-fold cross validation for internal cluster validation. Creates k random subsets ("folds") from the data, estimating a model for each of the k-1 combined folds.
latrendCV(
method,
data,
folds = 10,
seed = NULL,
parallel = FALSE,
errorHandling = "stop",
envir = NULL,
verbose = getOption("latrend.verbose")
)method |
The |
data |
A |
folds |
The number of folds. Ten folds by default. |
seed |
The seed to use. Optional. |
parallel |
Whether to enable parallel evaluation. See latrend-parallel. |
errorHandling |
Whether to |
envir |
The |
verbose |
The level of verbosity. Either an object of class |
A lcModels object of containing the folds training models.
Other longitudinal cluster fit functions:
latrendBatch(),
latrendBoot(),
latrendRep(),
latrend()
Other validation methods:
createTestDataFolds(),
createTestDataFold(),
createTrainDataFolds(),
latrendBoot(),
lcModel-data-filters
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrendCV(method, latrendData, folds = 5)
model <- latrendCV(method, subset(latrendData, Time < .5), folds = 5, seed = 1)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.