Two-step clustering through linear regression modeling and k-means
Two-step clustering through linear regression modeling and k-means
lcMethodLMKM(
formula,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
standardize = scale,
...
)formula |
A |
time |
The name of the time variable. |
id |
The name of the trajectory identification variable. |
nClusters |
The number of clusters to estimate. |
standardize |
A |
... |
Arguments passed to stats::lm. The following external arguments are ignored: x, data, control, centers, trace. |
Other lcMethod implementations:
lcMethod-class,
lcMethodAkmedoids,
lcMethodCrimCV,
lcMethodCustom,
lcMethodDtwclust,
lcMethodFeature,
lcMethodFunFEM,
lcMethodGCKM,
lcMethodKML,
lcMethodLcmmGBTM,
lcMethodLcmmGMM,
lcMethodLongclust,
lcMethodMclustLLPA,
lcMethodMixAK_GLMM,
lcMethodMixtoolsGMM,
lcMethodMixtoolsNPRM,
lcMethodRandom,
lcMethodStratify
data(latrendData) method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time", nClusters = 3) model <- latrend(method, latrendData)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.