Missing data example
Simulated data generated from model
E(Y_i\mid X) = X, \quad cov(Y_1,Y_2\mid X)=0.5
list of data.frames
The list contains four data sets 1) Complete data 2) MCAR 3) MAR 4) MNAR (missing mechanism depends on variable V correlated with Y1,Y2)
Simulated
data(missingdata) e0 <- estimate(lvm(c(y1,y2)~b*x,y1~~y2),missingdata[[1]]) ## No missing e1 <- estimate(lvm(c(y1,y2)~b*x,y1~~y2),missingdata[[2]]) ## CC (MCAR) e2 <- estimate(lvm(c(y1,y2)~b*x,y1~~y2),missingdata[[2]],missing=TRUE) ## MCAR e3 <- estimate(lvm(c(y1,y2)~b*x,y1~~y2),missingdata[[3]]) ## CC (MAR) e4 <- estimate(lvm(c(y1,y2)~b*x,y1~~y2),missingdata[[3]],missing=TRUE) ## MAR
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.