Get the Top Words and Documents in Each Topic
This function takes a model fitted using
lda.collapsed.gibbs.sampler
and returns a matrix of the
top words in each topic.
top.topic.words(topics, num.words = 20, by.score = FALSE) top.topic.documents(document_sums, num.documents = 20, alpha = 0.1)
topics |
For |
num.words |
For |
document_sums |
For |
num.documents |
For |
by.score |
If by.score is set to |
alpha |
For top.topic.words
, a num.words \times K character matrix where each column contains
the top words for that topic.
For top.topic.documents
, a num.documents \times K integer matrix where each column contains
the top documents for that topic. The entries in the matrix are
column-indexed references into document_sums
.
Jonathan Chang (slycoder@gmail.com)
Blei, David M. and Ng, Andrew and Jordan, Michael. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.
lda.collapsed.gibbs.sampler
for the format of topics.
predictive.distribution
demonstrates another use for a fitted
topic matrix.
## From demo(lda). data(cora.documents) data(cora.vocab) K <- 10 ## Num clusters result <- lda.collapsed.gibbs.sampler(cora.documents, K, ## Num clusters cora.vocab, 25, ## Num iterations 0.1, 0.1) ## Get the top words in the cluster top.words <- top.topic.words(result$topics, 5, by.score=TRUE) ## top.words: ## [,1] [,2] [,3] [,4] [,5] ## [1,] "decision" "network" "planning" "learning" "design" ## [2,] "learning" "time" "visual" "networks" "logic" ## [3,] "tree" "networks" "model" "neural" "search" ## [4,] "trees" "algorithm" "memory" "system" "learning" ## [5,] "classification" "data" "system" "reinforcement" "systems" ## [,6] [,7] [,8] [,9] [,10] ## [1,] "learning" "models" "belief" "genetic" "research" ## [2,] "search" "networks" "model" "search" "reasoning" ## [3,] "crossover" "bayesian" "theory" "optimization" "grant" ## [4,] "algorithm" "data" "distribution" "evolutionary" "science" ## [5,] "complexity" "hidden" "markov" "function" "supported"
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.