Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

lgb.Dataset

Construct lgb.Dataset object


Description

Construct lgb.Dataset object from dense matrix, sparse matrix or local file (that was created previously by saving an lgb.Dataset).

Usage

lgb.Dataset(
  data,
  params = list(),
  reference = NULL,
  colnames = NULL,
  categorical_feature = NULL,
  free_raw_data = TRUE,
  info = list(),
  ...
)

Arguments

data

a matrix object, a dgCMatrix object or a character representing a filename

params

a list of parameters

reference

reference dataset

colnames

names of columns

categorical_feature

categorical features

free_raw_data

TRUE for need to free raw data after construct

info

a list of information of the lgb.Dataset object

...

other information to pass to info or parameters pass to params

Value

constructed dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
lgb.Dataset.save(dtrain, data_file)
dtrain <- lgb.Dataset(data_file)
lgb.Dataset.construct(dtrain)

lightgbm

Light Gradient Boosting Machine

v3.2.1
MIT + file LICENSE
Authors
Guolin Ke [aut, cre], Damien Soukhavong [aut], James Lamb [aut], Qi Meng [aut], Thomas Finley [aut], Taifeng Wang [aut], Wei Chen [aut], Weidong Ma [aut], Qiwei Ye [aut], Tie-Yan Liu [aut], Yachen Yan [ctb], Microsoft Corporation [cph], Dropbox, Inc. [cph], Jay Loden [cph], Dave Daeschler [cph], Giampaolo Rodola [cph], Alberto Ferreira [ctb], Daniel Lemire [ctb], Victor Zverovich [cph], IBM Corporation [ctb]
Initial release
2021-04-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.