L-moments of specific probability distributions
Computes the L-moments of a probability distribution given its parameters. The following distributions are recognized:
lmrexp |
exponential | |
lmrgam |
gamma | |
lmrgev |
generalized extreme-value | |
lmrglo |
generalized logistic | |
lmrgpa |
generalized Pareto | |
lmrgno |
generalized normal | |
lmrgum |
Gumbel (extreme-value type I) | |
lmrkap |
kappa | |
lmrln3 |
three-parameter lognormal | |
lmrnor |
normal | |
lmrpe3 |
Pearson type III | |
lmrwak |
Wakeby | |
lmrwei |
Weibull | |
lmrexp(para = c(0, 1), nmom = 2) lmrgam(para = c(1, 1), nmom = 2) lmrgev(para = c(0, 1, 0), nmom = 3) lmrglo(para = c(0, 1, 0), nmom = 3) lmrgno(para = c(0, 1, 0), nmom = 3) lmrgpa(para = c(0, 1, 0), nmom = 3) lmrgum(para = c(0, 1), nmom = 2) lmrkap(para = c(0, 1, 0, 0), nmom = 4) lmrln3(para = c(0, 0, 1), nmom = 3) lmrnor(para = c(0, 1), nmom = 2) lmrpe3(para = c(0, 1, 0), nmom = 3) lmrwak(para = c(0, 1, 0, 0, 0), nmom = 5) lmrwei(para = c(0, 1, 1), nmom = 3)
para |
Numeric vector containing the parameters of the distribution. |
nmom |
The number of L-moments to be calculated. |
Numerical methods and accuracy are as described in Hosking (1996, pp. 8–9).
Numeric vector containing the L-moments.
J. R. M. Hosking jrmhosking@gmail.com
Hosking, J. R. M. (1996). Fortran routines for use with the method of L-moments, Version 3. Research Report RC20525, IBM Research Division, Yorktown Heights, N.Y.
lmrp
to compute L-moments of a general distribution
specified by its cumulative distribution function or quantile function.
samlmu
to compute L-moments of a data sample.
pelexp
, etc., to compute the parameters
of a distribution given its L-moments.
For individual distributions, see their cumulative distribution functions:
# Compare sample L-moments of Ozone from the airquality data # with the L-moments of a GEV distribution fitted to the data data(airquality) smom <- samlmu(airquality$Ozone, nmom=6) gevpar <- pelgev(smom) pmom <- lmrgev(gevpar, nmom=6) print(smom) print(pmom)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.