twCoefLogitnorm
Estimating coefficients of logitnormal distribution from median and upper quantile
twCoefLogitnorm(median, quant, perc = 0.975, ...)
median |
numeric vector: the median of the density function |
quant |
numeric vector: the upper quantile value |
perc |
numeric vector: the probability for which the quantile was specified |
... |
numeric matrix with columns c("mu","sigma")
rows correspond to rows in median, quant, and perc
Thomas Wutzler
# estimate the parameters, with median at 0.7 and upper quantile at 0.9 med = 0.7; upper = 0.9 med = 0.2; upper = 0.4 (theta <- twCoefLogitnorm(med,upper)) x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function plot(px~x); abline(v = c(med,upper),col = "gray"); abline(h = c(0.5,0.975),col = "gray") dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function plot(dx~x); abline(v = c(med,upper),col = "gray") # vectorized (theta <- twCoefLogitnorm(seq(0.4,0.8,by = 0.1),0.9)) .tmp.f <- function(){ # xr = rlogitnorm(1e5, mu = theta["mu"], sigma = theta["sigma"]) # median(xr) invlogit(theta["mu"]) qlogitnorm(0.975, mu = theta["mu"], sigma = theta["sigma"]) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.