Gyr function
Relativistic addition of three velocities
gyr(u, v, x) gyr.a(u, v, x) gyrfun(u, v)
u,v,x |
Three-velocities, objects of class |
Function gyr(u,v,x)
returns the three-vector
gyr[u,v]x.
Function gyrfun(u,v)
returns a function that returns a
three-vector; see examples.
The speed of light (1 by default) is not used directly by these
functions; set it with sol()
.
Function gyr()
is slightly faster than gyr.a()
, which is
included for pedagogical reasons.
Function gyr()
is simply
add3(neg3(add3(u,v)),add3(u,add3(v,x)))
while function gyr.a()
uses the slower but more transparent
idiom
-(u+v) + (u+(v+x))
Robin K. S. Hankin
Ungar 2006. “Thomas precession: a kinematic effect of the algebra of Einstein's velocity addition law. Comments on ‘Deriving relativistic momentum and energy: II. Three-dimensional case’”. European Journal of Physics, 27:L17-L20.
Sbitneva 2001. “Nonassociative geomery of special relativity”. International Journal of Theoretical Physics, volume 40, number 1, pages 359–362
u <- r3vel(10) v <- r3vel(10) w <- r3vel(10) x <- as.3vel(c(0.4,0.1,-0.5)) y <- as.3vel(c(0.1,0.2,-0.7)) z <- as.3vel(c(0.2,0.3,-0.1)) gyr(u,v,x) # gyr[u,v]x f <- gyrfun(u,v) g <- gyrfun(v,u) f(x) f(r3vel(10)) f(g(x)) - x # zero, by eqn 9 g(f(x)) - x # zero, by eqn 9 (x+y) - f(y+x) # zero by eqn 10 (u+(v+w)) - ((u+v)+f(w)) # zero by eqn 11 # Following taken from Sbitneva 2001: rbind(x+(y+(x+z)) , (x+(y+x))+z) # left Bol property rbind((x+y)+(x+y) , x+(y+(y+x))) # left Bruck property sol(299792458) # speed of light in SI as.3vel(c(1000,3000,1000)) + as.3vel(c(1000,3000,1000)) ## should be close to Galilean result sol(1) # revert to default c=1
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.