Sparse antimagic squares
Produces an antimagic square of order m using Gray and MacDougall's method.
sam(m, u, A=NULL, B=A)
m |
Order of the magic square (not “ |
u |
See details section |
A,B |
Start latin squares, with default |
In Gray's terminology, sam(m,n) produces a
SAM(2m,2u+1,0).
The method is not vectorized.
To test for these properties, use functions such as
is.antimagic(), documented under is.magic.Rd.
Robin K. S. Hankin
I. D. Gray and J. A. MacDougall 2006. “Sparse anti-magic squares and vertex-magic labelings of bipartite graphs”, Discrete Mathematics, volume 306, pp2878-2892
sam(6,2)
jj <- matrix(c(
5, 2, 3, 4, 1,
3, 5, 4, 1, 2,
2, 3, 1, 5, 4,
4, 1, 2, 3, 5,
1, 4, 5, 2, 3),5,5)
is.sam(sam(5,2,B=jj))Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.