A Parallelized General-Purpose Optimization Based on Marquardt-Levenberg Algorithm
This algorithm provides a numerical solution to the problem of unconstrained local minimization (or maximization). It is particularly suited for complex problems and more efficient than the Gauss-Newton-like algorithm when starting from points very far from the final minimum (or maximum). Each iteration is parallelized and convergence relies on a stringent stopping criterion based on the first and second derivatives. See Philipps et al, 2020 <arXiv:2009.03840>.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.